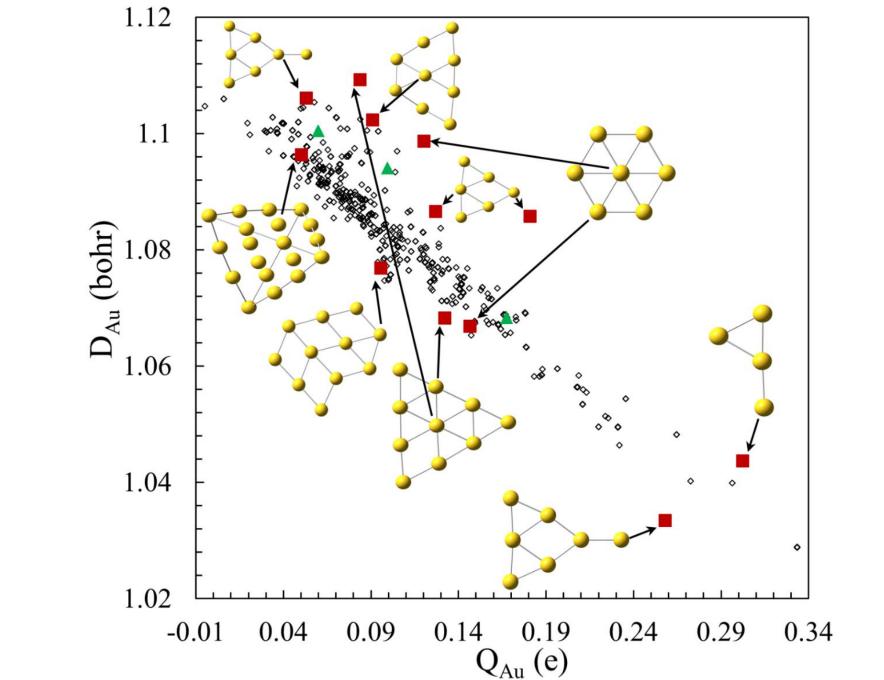


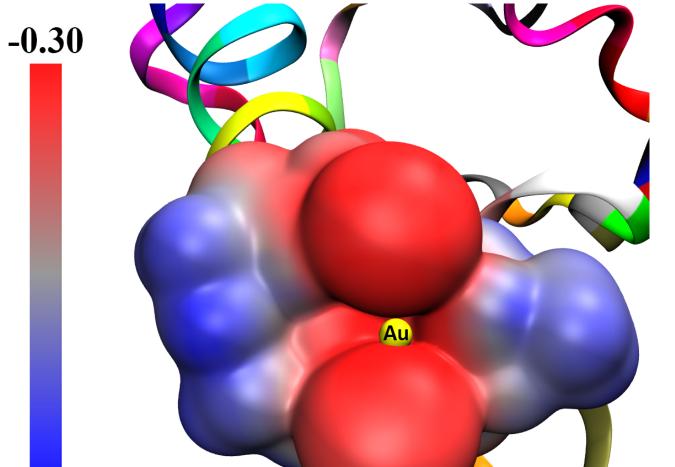
An Orbital-Overlap Complement to Atomic Partial Charge

Arshad Mehmood and Benjamin G. Janesko

Department of Chemistry & Biochemistry, Texas Christian University


Partial Charge and Reactivity

• Atomic partial charges obtained from computed wavefunctions are widely used for interpreting the quantum chemistry simulations and the chemical reactivity of molecules, solids, surfaces, and nanoparticles

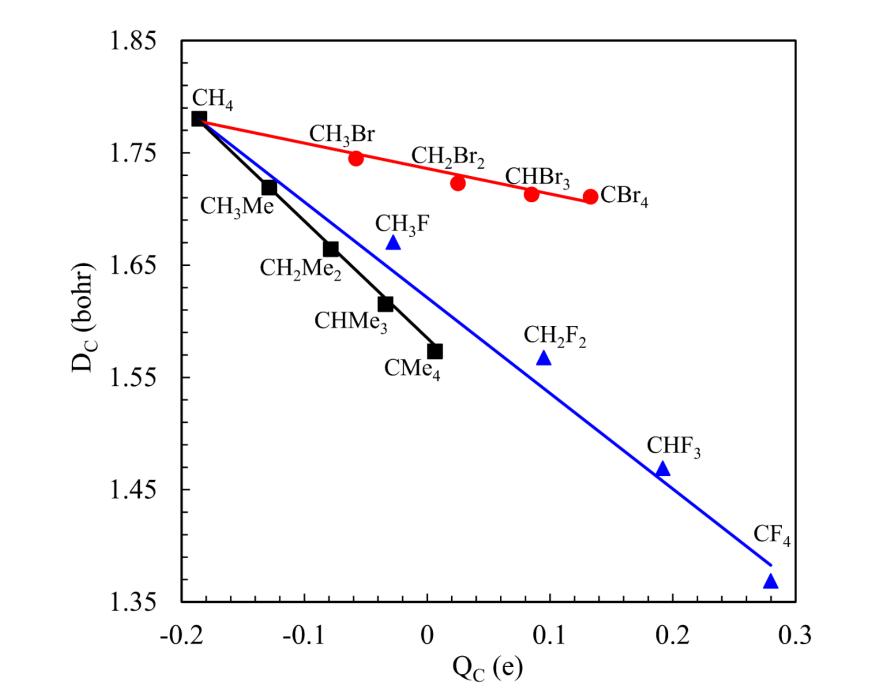

 In many cases partial charge alone gives an incomplete picture of reactivity:¹

(1) PhS⁻ is a better nucleophile compared to PhO⁻ in $S_N 2$ reactions with MeI, though PhO⁻ has a more

System	Q_A (a.u)	D _A (bohr)
S in PhS ⁻	-0.561	2.021
O in PhO ⁻	-0.825	1.367
F-	-1.000	1.237
CI	-1.000	1.934
Br⁻	-1.000	2.165
 -	-1.000	2.476
β-C in Butenone	-0.071	1.302
Carbonyl C in Butenone	0.173	1.183

• ESP of Au⁺ binding pocket plotted on 0.001 e/bohr³ density surface calculated at the electron ONIOM(ω B97X-D/6-311g(d,p):AMBER) level⁵

negative charge on the nucleophilic atom (2) The carbons of benzene and cyclobutadiene, or those of diamond, graphene, and C_{60} , possess nearly identical partial charges and very different reactivity

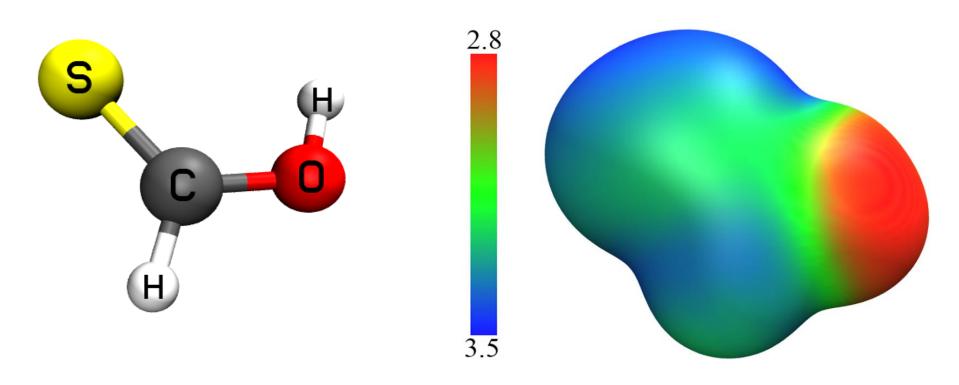

- (3) Many nucleophiles attack α , β -unsaturated ketones at the softer β carbon, not at the more positively charged carbonyl carbon
- (4) Halide anions F⁻, Cl⁻, Br⁻ and I⁻ have identical charges but different nucleophilicities
- (5) Carbons in aromatic benzene and anti-aromatic cyclobutadiene have nearly identical partial charges, but different reactivity.

Orbital Overlap Distance $D(\vec{r})$

• The Orbital Overlap Distance $D(\vec{r})$ is constructed from the Orbital Overlap Range Function $EDR(\vec{r}; d)$ • $EDR(\vec{r}; d)$ quantifies the extent to which an electron at point \vec{r} in a calculated wave function overlaps over

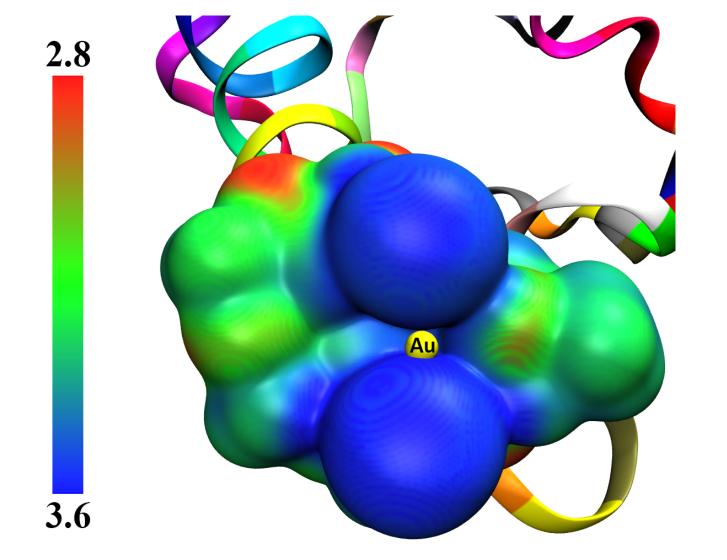
C in Diamond	-0.003	1.543
C in Graphene	-0.002	1.586
C in C ₆₀	0.000	1.603

Capturing the Effects of Substituents



 Calculated in gas phase at B3LYP/6-31+G(d,p) level • Relation is nearly linear within a substituent class, different substituents have different trends

• Small D_{Au} occurs for stable Au₁₉⁺ and Au₂₀⁺ • Aromatic Au_5Zn^+ (triangles) has small D_{Au} given the small cluster size.


Surface Overlap Distance

• Plots of overlap distance $D(\vec{r})$ on molecular surfaces like electron or spin density isosurfaces capture chemical hardness/softness, acid-base interactions, halogen bonding and other σ -hole interactions • Maximum surface value of $D(\vec{r})$ complements molecular electrostatic potential (ESP)

• $D(\vec{r})$ thioformic acid plotted on 0.001 e/bohr³ Of electron density surface distinguishes chemically

• Overlap distance $D(\vec{r})$ plotted on 0.001 e/bohr³ electron density surface calculated at the same level of theory

• The gold-binding site (ESP=-0.293 au, $D(\vec{r})$ =3.692 bohr) is anionic, and has a large overlap distance • Though Cu⁺ (ESP=0.304 au, $D(\vec{r}) = 1.789$ bohr) is more positive compared to Au⁺ (ESP=0.270 au, $D(\vec{r})=2.030$ bohr) but small $D(\vec{r})$ makes it a hard Lewis acid compared to Au⁺ which is a preferred candidate for this binding site.

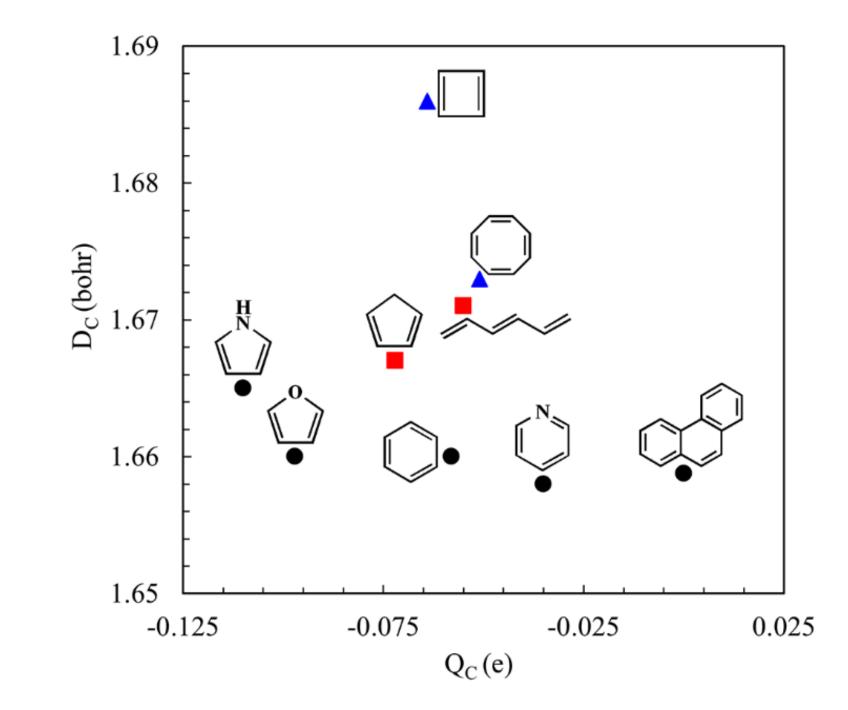
distance "d" 2-4

 $EDR(\vec{r};d) = \int d^3\vec{r}'g_d(\vec{r},\vec{r}')\gamma(\vec{r},\vec{r}')$ $g_d(\vec{r}, \vec{r}') \equiv \rho^{-1/2}(\vec{r}) \left(\frac{2}{\pi d^2}\right)^{3/4} exp\left(-\frac{|\vec{r} - \vec{r}'|^2}{d^2}\right)$ $\langle EDR(d) \rangle = \int d^3 \vec{r}' \rho(\vec{r}) EDR(\vec{r};d)$ $D(\vec{r}) = \arg \max_{d} EDR(\vec{r}; d)$

• Plots of $D(\vec{r})$ on density isosurfaces complements molecular electrostatic potentials

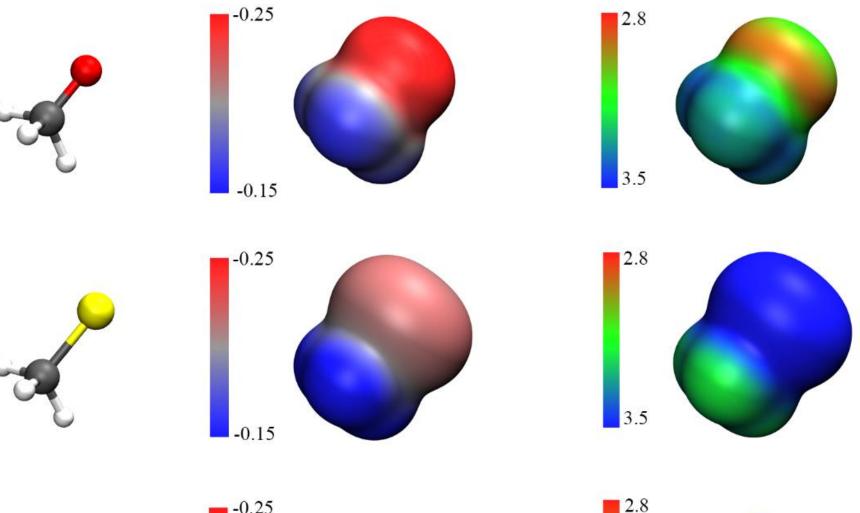
• The atomic overlap distance D_A , is defined as the average overlap length of electrons assigned to atom A in the molecule:

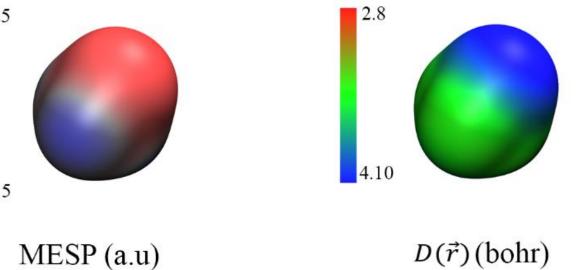
$$D_A = \int d^3 \vec{r} \rho(\vec{r}) D(\vec{r}) w_A(\vec{r})$$


where $w_A(\vec{r})$ is the Hirshfeld weight for atom A.

• More negative $Q_{\rm C}$ give larger $D_{\rm C}$, as only relatively diffuse orbitals are available to hold added electron

density


• Binding carbon to large, "puffy" bromine atoms makes its orbitals larger, giving a relatively large $D_{\rm C}$, whereas compact fluorine atoms makes the carbon orbitals smaller, giving a relatively small $D_{\rm C}$.


Atomic Overlap Distance and Aromaticity

hard oxygen (red) from chemically soft sulfur (blue).

Capturing Trends in HSAB

• Plotted on 0.001 e/bohr³ electron density surface⁵

Geometry

		$ \rightarrow $	Interaction Energy
Lewis	ESP	D(r)	(kcal/mol)

Predictions for Complexation-Strength

Metal Ion	Radius (pm)	ESP (a.u)	$D(\vec{r})$ (bohr)	log K (NH ₃) ⁶
K+	138	0.364	2.22	-2.8
Au+	137	0.366	1.64	5.6
Ca ²⁺	100	0.920	1.87	-0.2
Hg ²⁺	102	0.916	1.44	8.8
Mg ²⁺	72	1.241	1.40	0.26
Zn ²⁺	74	1.192	1.24	2.18

• For each group of metal ions, the ionic radius and calculated surface ESP at ωB97X-D/def2-TZVPP level are same but large difference in experimental stability constants is explained by the difference in the surface overlap distance.

Availability

 Multiwfn (<u>http://sobereva.com/multiwfn/</u>) Gaussian 16 (<u>http://gaussian.com/gaussian16/</u>)

• D_A complements computed Hirshfeld charges Q_A by measuring the size of orbital lobes that best overlap with the wavefunction around an atom

• Compact, chemically stable atoms tend to have overlap distances smaller than chemically soft, unstable atoms.

Combining Charge and D_{A}

• Combining atomic charges (Q_A) overlap and distances (D_{A}) captures trends in aromaticity, nucleophilicity, allotrope stability, and substituent effects.¹

•Aromatic benzene, non-aromatic hexatriene, and anti-aromatic cyclobutadiene have nearly identical $Q_{\rm C}$, their computed $D_{\rm C}$ clearly distinguish the relatively unstable, weakly bound, diffuse carbons of cyclobutadiene.

Non-trivial Predictions for Nanomaterials

 Calculated in gas phase at PW91/LANL2DZ level • The outer Au atoms have unusually small D_{Au} , while the central atom has an unusually large D_{AII} Rationalizes a huge body of experimental and theoretical work on MAu₆ hexagons, in which the central atom is replaced with dopant M

			ไหวลา	
Base	(a.u)	(bohr)	H+	Au+
MeO	-0.256	3.081	394	427
MeS⁻	-0.214	3.683	365	433
Me⁻	-0.231	4.238	429	481

 H⁺ being a hard and strong acid prefers MeO⁻ (small) $D(\vec{r})$ over MeS⁻ (large $D(\vec{r})$) whereas Au⁺ which is a soft weak acid shows opposite behavior.

Selectivity in Protein–Ligand Interactions

Why gold-specific protein GolB, shows higher selectivity for Au⁺ over Cu⁺ though former has lower ESP?

NCIplot (<u>https://github.com/aoterodelaroza/nciplot</u>)

Acknowledgment

National Science Foundation Award DMR-1505343

References

- 1. Mehmood, A.; Janesko, B. G. Angew. Chem. Int. Ed. **2017**, *56*, 6878–6881.
- 2. Mehmood, A.; Janesko, B. G. Int. J. Quantum Chem. **2016**, *116*, 1783–1795
- 3. Janesko, B. G. et al. J. Chem. Phys., 2014, 141,144104.
- 4. Janesko, B. G. et al. J. Chem. Theory Comput., 2016, 12, 79–91.
- 5. Mehmood, A. et al. Submitted.
- 6. Hancock, R. D. et al. Chem. Rev. 1989, 89, 1875-1914.